
[AD AUSb b’Ib iLLINOIS UNIV AT IMSANA—CHAMPAXUN ELECTROMAGNETICS LAB FIG 20/3
SOURCE RADIATION IN THE PRt.SENCE OF SMOOTH CONVEX BOOXES. (t,)
JUN 78 S SAFAVI NAINI, R MITTRA N0001’e—75—C—0293

UNCLASSIF ltD EM—7b—3 IlL

~
i. Un.

I

_ -

_

I

_
IiU!iCF~~~~~fl 1



• I C ~ IIII~

ow ‘ ‘
MU’ IIIlI~ irni~
MICROCOPY RESOLUTION TEST CHP~T

NATIOR4 At. BUREAU OF STA NOA RDS - I%3• ,~



ELECTROMAGNETICS LABORATORY
TECHNICAL REPORT NO. 78—3

June 1978

SOURCE RADIATION IN THE PRESENCE
OF SMOOTH CONVEX BODIES

iw
4 •

~ =• S. Safavi—Naini
R .Mittra ‘I~ C

FThi. docur r t ‘.~~~~ b~~n u~
proved

for pub!f~ rc~ ~d ~c1c; 
t~s

distribution is trll’ited.

ELECTROMAGNETICS LABORATORY Supported by
DEPARTMENT OF ELECTRICA L ENGINEERING Contract No. N00014—75—C—0293
ENGINEERING EXPERIMENT STATION Office of Naval Research
UNIVERSITY OF ILLINO IS Al URBANA-ChAMPAIGN Department of the Navy
URBANA , ILLINOIS  6180 1 Arlington , Virginia 22217

78 07 07 04~



W4CtASSIFIED
SSCURITY CLASSIFICATION OF THIS P A G C  (Wh.ii 0.1. £nI.c.d) 

___________________________________

READ INSTRUCTIONSREPORT DOCUMENTATIuN r~~~ u BEFORE COMPL. ETtNG FORM
1~ ~ CPo RT MUU SSR a. GOvT ACC I$$ OM NO. 3. CIPI~~N T S  C A T A L O G  NUMS(~

4. T I T L S ( id Sub4Ill.) I. TYPE OF ~(PO~~T d~ &~ h.6I ~&ó/

/ 7i urce Radiation in the Presence of 1 ~~L~
echnical ~~~~~~~~~ Smooth Convex Bodies . 

- ..J • ORG. ~~6 ORT NUM SI ~

________________________________________________ 
N ~~~~~~~ JILU—ENG— ~~~~~~~

~~~~ 
~~~~ool4~7s-c~e293j

S. PERFORMING ORGANIZA TION NAM E A NO ADO ES$ 10. 
~~~~~~rT~~~1~1~ 

YASIC

Electromagnetics Laboratoryl
Department of Electrical Engineering
University of Illinois. Urban a. Illinois 618O~ __________________________

I t .  CONTROLLING OFFICE NAME AND A OO RCSS 2 ________

Office of Naval Research ,,~~j .Jun~~~~~78J
Department of the Navy -

~~~~
‘ 

~~~~~~~~
Arlin2ton.. Virginia 22217 — 

6~ ~~~ (
14. MONITORING AGENCY NAME a AOORESS(SI dSlM,.nI I,o.~~ Ccnirollffi4 OHIo.) IS SEC UNITY CLASS. (oT’~~Th r.p*fl)

UNCLASSIFI ED
So. O ECLA SSIFI CA II ON 00 WN GRA QING

SCHEDULE

14. DISTRISUTION STATEM ENT (.1 tIll . R.p.~s)

Distribution unlimited. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

17. 0151’ RISUTION STATEM ENT (*1 tI~. obatraC t .øft,.d in Slock 20. II dIl~.,. nt Iron, R.p.rI)

IS. SU PPL EMENTAR Y NOTE S

15. ICEY WO RDS (ContInu. on rov•ra• aid. ,l n.c.aa .ey ~ id id.nsily by block rnafllb.t)

Electromagnetic radiation and scattering; geometrical theory of
diffraction ; spectral domain approach ; asymptotic techniques for
high frequencies; Fock ’s theory; stationary phase methods

ST RACY (Contlnu. on ,.~ .v.. •od• II n.c..a.,y ond id.nHIy by block numb ,)

The problem of radiation from sources in the presence of smooth ,
convex, impenetrable objects is considered , and a brief survey of
various high frequency techniques is presented. A generalization of
the geometrical theory of diffraction and two new techniques, based on
the spectral domain approach and an asymptotic evaluation of the
radiation integral for the surface current, are also discussed . Some
numerical results derived from the spectral domain formulas are presented —

~~~~~ ~~~~~~~~~~

DD , 
~~~~~~~~~ 

1473 EDITION OF I NOv 61 IS OSSOL Sr i  UNClASSIFIED (over)

~

‘ J /~ .2 SECURITY CLASSIFICAT ION OF THIS PAGE (P~~.fl 0.1* iItt. 0d1

‘ 78 07 07 o4~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -..-~~~~~~~~~~~



_

~~tJ .  UUL ’~I~~~~1 - ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
and a comparison with available theoretical and e~~ erimental data is included .



r~ 
; . - - - - - -.

UILU—ENG—78—2544

Electromagnetics Laboratory Report No. 78— 3

SOURCE RADIATION IN THE PRESENCE
OF SMOOTH CONVEX BODIES

Technical Report

S. Safavi—N aini and R. Mittra

June 1978

Office of Naval Resear ch
Department of the Navy

Arlington , Virginia 22217

Contract No. N00014— 75—C— 0293

I

Electromagnetics Laboratory
Department of Electrical Engineering

Engineering Experiment Station
University of Illinois at Urbana—Ch ampaign

Urbana , Illinois 61801



~ ..

ABSTRACT

The problem of radiation from sources in the presence of

smooth, convex, impenetrable objects is considered, and a brief

survey of various high frequency techniqes is presented . A

generalization of the geometrical theory of diffraction, and two

new techniques based on the spectral domain approach and an

asymptotic evaluation of the radiation integral for the surface

current, also are discussed . Some numerical results derived from

the spectral domain formulas are presented and a comparison with

available theoretical and experimental data is included.
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1. Introduction

The problems of radiatio~i from sources in the presence of impenetrable

smooth convex objects and the diffraction of a plane wave by such objects are

of great practical interest in the design of antennas on structures, e.g.,

conformal arrays. Unfortunately, the exact analytical solutions to these

problems, based on the methods of “separation of variables” or “function—

theoretic” procedures (Wiener—Hopf technique, residue calculus, etc.), exist

only for a very limited number of scattering geometries. Furthermore,

the exact solutions are typically highly complex in nature; hence, the process

- 
of extracting numerical results from them can be very time—consuming and is

by no means trivial. This situation has motivated many researchers to explore

approaches to the probl~ is of radiation and scattering from smooth convex

structures.

In the low and resonant frequency ranges, several reliable numerical

procedures , e.g., the moment method, are available for solving the radiation

and scattering problems. However, in the high frequency domain, numerical

techniques based on matrix methods become unwieldly if not impractical, prompting

one to employ asymptotic techniques suitable for large k(”2ir/X), where X is

the wavelength of the illuminating wave.

In this work, we begin by presenting, in Sec. 2 , a survey of various

high frequency asymptotic techniques for the problem stated above. The survey

will be necessarily brief , and will cover only the highlights of a number of

important approaches to the problem at hand, viz., Fock’s theory, the geometrical

theory of diffraction (GTD), and the direct integral equation approach. The

reader interested in further details may choose to consult the works of Bowman,

et al. [1], Uslenghi [2J, and Kouyoumjian [31.
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In Sec . 3, we consider the generalization of GTD and present some new

approaches to the curved surface radiation and scat.tering problems. Some

numerical results based on one of these new approaches are presented in Sec. 3

and a comparison with other available methods are included .

2. Survey of Available High—Frequency Asymptotic Techniques

2.1 Watson Transformation

One of the f i rs t  successful attempts to derive an asymptotic expansion

for the far—field generated by a point source located in the proximity of a

conducting surface was made by G. N. Watson in 1918 [4]. His method,

essentially, consisted of two steps: 1) transforming the original infinite

series solution into a contour integral (by Cauchy ’s residue theorem); 2)

deforming the contour of integration so as to capture a set of complex poles

of the integrand. The original integral is then expressed in terms of an

infinite series which converges very rapidly , provided the observation point

is in the shadow region. The first few terms of this series were later inter-

preted as “creeping waves.” The method was first applied to a sphere and

circular cylinder , and later to some other geometries as well. The mathematical

rigor of the method was the subject of further investigations by other researchers

([5], (6] and [7]). Although Watson transformation can only be applied to a

few simple goemetries, e.g., the sphere, cylinder, cone, spheroid, it is

still regarded as one of the cornerstones of the more general high frequency

techniques because of its mathematical rigor . Watson transformation is

especially powerful in the shadow region of the geometric optics field. In

the lit region, the above—mentioned contour integral is evaluated using the

“stationary phase” method and yields the reflected field from the surface.

In this region, the most significant contribution to the total scattered field

typically comes from the surface current induced on the smooth convex part of

the object; the so—called “Physical Optics” approximation can be applied

2
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((8], (9], and (10]) to derive the reflected field. The Physical Optics

method is based upon approximating the induced surface current in the lit

region of the object by the current that wou1c~ be induced on the local tangent

plane, and by assuming that the surface current is zero in the shadow region.

The far field is constructed by substituting the above estimate for the

induced surface current in the integral representation of the scattered field,

and evaluating the same in an asymptotic sense. The dominant term of the

asymptotic expansion of this integral can be shown to be identical to the first term

of the Luneberg—Kline expansion of the geometrical optics far field ([11] and

[121). However, the higher—order terms derived from the physical optics

approach do not provide us with the correct result in the shadow or transition

regions where the diffracted field contributes the most.

In the next section, we discuss Fock’s theory , which can fill the gap

between the Physical Optics in the lit region and the “creeping wave”

representation in the shadow region.

2.2 Fock’s Theory

The region between the lit and the shadow part on a surface is called

“penumbra region..” The angular width of this region is approximately given

by (X r~ /ir)~
”
~ where A is the wavelength of the illumination and r is the

radius of curvature of the surface of the object in this region in the incident

plane (Fig. 1). Fock’s theory invokes the principle of local character of

the field in the penumbra region [13) and is based on the conjecture that all

bodies with a smoothly varying curvature have the same current distribution

in the penumbra region, provided that the curvature and the incident wave are

the same near the point under consideration. This principle allows one to

locally replace the surface of the object by a portion of a paraboloid of

3
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Figure 1: Section of the body in the plane of incidence.
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Figure 2: Plane wave incident upon a smooth convex body .
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revolution. A unique feature of the expressions for Pock currents is that

they provide a convenient transformation of the geometric optics currents

in the lit region into the creeping wave currents in the shadow region.

Pock himself deduced the pertinent formulas for the surface currents by

treating a convex body problem (14] described below.

Consider a convex body and a plane wave incident in the direction of the

x—axis. If the equation of the surface is

f(x,y,z) 0 (1)

then the curve representing the boundary of geometrical shadow is given by

-
~~ aff(r) ~~O , ~—~~~ O (2 )

Consider a point 0 on the boundary of a shadow region where we set up

a rectangular coordinate system as shown in Fig. 2 (z: normal to the surface,

x: in the direction of propagation, and ~ is the tangent to the boundary of

shadow). In the vicinity of this point, the surface of the body could be

locally replaced by a paraboloid of revolution which is expressed by the

equation.

+ 1/2 (ax2 + 2bxy + cy2) * 0 (3)

Each of the field components satisfies the Helmholtz equation

(V 2 + k2)’Y - 0 (4)

5
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The fact that the incident wave travels along the x— axis , suggests that ‘
~

be written in the form

(5)

where an exp (j~ t) time dependence has been assumed. Substituting (5) in (4)

gives

— 2jk~~~~F~
u 0 (6)

At this point, two basic assumptions are introduced in Fock’s theory,

viz.

i) ‘Ps are relatively slowly varying function of coordinates

ii) ‘i’ varies more rapidly in the z—direction than in x and y,

i.e.,

~~~~~ 0(-~ ~) ,  
~~ 

— O(~ , ~) ,  — 0 (- ‘tO (7)

Based upon (7), we can write (6) as

a
2
~’ 2jk.~~~

_ 0 (8)

and consequently m ’ — m2 (m is very large), where the terms of order 1/rn2

have been omitted.

Inserting these estimates and assumptions into the Maxwell’s equation,

we can find some simple expressions for all the field components in terms of

H and H . If we write H as

*,~ ~~~~~ ~~----~~~~~~~ ~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~



P’~~ ~ — - -.~~~~~ _ :~~~:-: 
—

~ 
~~~ -‘-~—-~

- ~~~~~~~~~~ —~ 
—

H ~~~~~~~~~~~ (9)y y

where H° is the magnitude of the incident wave at infinity, then ~V must

satisfy

f4— 2jk~~!_ 0 (10)

with boundary condition

1 . .
-
~~ 

—jk (ax + by +,j~ 
) ‘~ a 0 (11)

on the surface of the body . Eqn. (11) is the simplified version of the

Leontovich boundary condition where

47r0

The final solution for H on the surface of the body which satisfies

the boundary condition and the condition at infinity , may be written in the

form

H HeX G(~ ,q) (12)

where Hex — external field
y

G(~ ,q) - e~~~
’3
~ ~~V1

(~ ,q)

V1
(~~,q) — Pock function defined in the Appendix A.

— m(ax + by) — reduced distance from the shadow boundary = Z/d.

d - the width of penumbra region - (2r02/k)~~ 3
1 distance between the observation point and the shadow boundary along the

incident ray (Fig. 3).

7
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Figure 3: Geometric meaning of the quantity I in (12).

Observation point

Figure 4: Coordinates of observation point in terms of ~ and ;.
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q a —jm/~n ~~~~ 
(— 0 for conducting body)

The other tangential component of the magnetic field LI on the surface

of the body can be obtained in a similar manner

H = [- ~~- e~~~
’3
~~~’~ f(~)] (13)

where f(~) is another Pock function defined in Appendix A. Pock’s

formulas not only give the surface value of the field, but also can be

utilized to find the field in the proximity of the object. For a plane wave

incideàce, the first order, i.e., 0(1/rn) terms for the scattered field within

a certain layer around the object, can be written as

H — 0, H = H° ~~~~~ ~ ~~~~ H
z 

— H° ~~~~~

(14)

E =(j/m)H° e~~~
C a~ / a~, E — H

z~ 
E —

where

= 2am~[z +(l/2)(ax
2 + 2bxy + cy2)] — reduced height from the surface

of the body (Fig. 4).

= _j~(~~ u / 3 ~~~ f e~
•j

~~
t [w1(t-C) 

- w
2
(t-~)] dt

(15)

— j — (j / 3 )~~ — 
w
1
(t)

— 
__1! f e ~ (w1(t—ç) 

— 

w
2
(t) 

w
2 
(t—c)) dt

The path of integration for ~ and ‘t’ is shown in Fig. 5

9
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Im (t)
Complex t-plane

J 

R e ( t )

Figure 5: Path of integration for (15) in the complex t—plane.

( Fock )
Inc~ :nt

e
(G00dri

~~
)
~

a

Figure 6: Comparison between the various definitions of
parameter ~ for the case of a circular cylinder.
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Pock’s expressions for the field components in the penumbra region

(~ 0) can be extended to the shadow region, by introducing some modifications

in the definition of parameter E . Goodrich [15] has generalized the

• argument used by Pock in the penumbra region to anywhere in the shadow

region by introducing a new set of variables,~ and ~,for the incremental

distances along the path leading into the shadow region. In this generalization,

the parameter ~ as defined in (12) is replaced by

f~ (kR(5) \ l/3 ds 16
-‘ ‘ 2 / R(s)
0

where s is the arc length along the geodesics which originate from the shadow

boundary and go into the shadow region along the surface, and R(s) is the

radius of curvature of the surface along the geodesics. For the case of a

circular cylinder of radius a (Fig. 6), the expression ~ simplifies to

— (ka/2)~~
3 e = s/d (17)

Pock also treated the case where the point source was very close to

the surface of the body . He analyzed the radiation of electric dipoles near a

spherical model of the earth [16] and derived the formulas for the scattered

fields in terms of functions (attenuation functions) similar to ~ and

‘(‘ , which are valid both in the shadow and transition regions [17]. Pock’s

assumptions were later proven in a more systematic and mathematically rigorous

manner by Cullen [18] and Hong [19] by using a direct integral equation

approach. This method is described in the next section.

11
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2.3 Direct Integral Equation Approaches

This method, which is closely related to Pock’s theory, can be

illustrated by analyzing the diffraction of a plane electromagnetic wave

by an arbitrary conducting body (large compared with A). Cullen (18] obtained

a first—order asymptotic solution to the integral equation for the induced

surface current

-~~ -~ -
~ -‘-inc -, -~~ +

J(r) = 2n(r) x ~~~ (r) — (l/2ir)n(r)

(18)

f ds’ l+jkR {~~(~ ‘) x

where ~(~~1s the outward unit normal to the surface at ~, ~~~~() is

-‘- +
the incident magnetic field on the surface (S) of the body,and R — r — r’

(? is a variable point on the surface).

Pock used this integral equation to deduce the important principle

of local character of the field in the penumbra region. Cullen derived a

first—order asymptotic solution to (18) which agreed with Pock’s results

given in (12) and (13). Cullen’s method consists of transferring the two—

dimensional integral equation (18), in the penumbra region, to a one—dimensional,

Volterra—type equation. This is accomplished by applying the stationary

phase technique to the original, integral while integrating with respect to

one of the variables. The resulting one—dimensional Volterra equation is then

solved in Cullen’s method by the Fourier transform technique. A similar

procedure was used by Hong [19] to analyze, asymptotically, the diffraction

of electromagnetic and acoustic plane waves by smooth convex bodies. We will

now proceed to explain Hong’s method in a little more detail by referring

back, once again, to the integral equation (18). The surface is parametrized by

12
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the geodesic coordinate system (a ,v) such that the shadow boundary for the

incident plane wave traveling along the tangent (0,v) to the v — 0 curve is the

a — 0 curve. The quantities ~(a ,v), ~(a ,v) and ~(a,v) form a right—hand local

orthonormal basis (n = ~ x l~) (P
ig. 7).

Since the incident field has a phase factor

we write the surface current in the form

a ( ‘ ( )  & ( )  + I
b
(t) ~(~) ] e ’jk~ (19)

where a is the arc length along the geodesic. Substituting (19) back into

(18) and restricting the resulting equation to the points on the geodesic v=0,

we obtain two coupled, two—dimensional integral equations for I (a ,O) and

I
b
(0,O). It can be shown that these integrals have saddle points at v.0 (for

the v—integration). Applying the “steepest descent path” method to v—integration,

and keeping the terms up to the order l/M~, where M
0 

= (kp (~ ,0))~ ’
~
’
~ , we

obtain the following decoupled one—dimensional, Volterra—type integral equations

for ‘b~~ ’°~ 
and

= 2 1inc(~~0) —J dT I (~ ,C) Ka(~
_T) .I- 0 (M 3

)

(20)

- 2 1inc (~,o) -f di ‘b~~
’°
~ ~~~~~~ 

~ 0(N~
3)

p(a ,v) is the radius of curvature of the surface along geodesics (v = constant

curves) at point (a,v).

Solving (20)by Fourier transforms, we obtain the expression for the

induced currents in the penumbra and shadow regions,and the first—order solutions

13
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Figure 7: Geodetic coordinate system on a smooth convex body .
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are found to be the same as those of Pock and GTD [20]. One of the iirportant

conclusions drawn from Hong’s solution is that the leading term in the

asymptotic expansion, which is the same for the acoustic and electromagnetic

problems, is independent of curvature in the direction transverse to the

geodesic, provided the divergence factor is suppressed. However, we should

bear in mind that Hong’s method was designed for the case of axial incidence

on symmetric objects,and in this case, the geodesics are torsionless. The

above conclusion does not seem to be valid in the cases where the rays have

nonzero torsion ([21], [22]). In Hong ’s expressions for the surface current,

the transverse curvature has only a second—order effect. It was also shown

that up to the terms of order (k4~0)
’2”3 in the asymptotic expansion, the

tangential and binorma). components of the creeping waves are not coupled.

Both Fock1s theory and the “direct integral equation approach” give the

induced surface current, or the scattered field in the neighborhood of the

surface of the scatterer , due to an incident plane wave. These expressions can

also be used to derive the radiated field via the use of the reciprocity theorem.

The methods which have been discussed thus far are mathematically

rigorous. However, they are limited in the scope of their application to

geometries satisfying some special smoothness and symmetry criteria. “Geometrical

theory of diffraction” (GTD), which we discuss in the next section, has a

broader scope, although it does lack the mathematical rigor of approaches

dascribed until now.

2.4 Geometrical Theory of Diffraction (GTD)

Geometrical theory of diffraction (GTD), developed by J. B. Keller

([20], [23], (24], [25], and (26]), is a generalization of geometrical optics.

15 
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It is based upon the assumption that fields propagate along rays. Keller’s

major contribution was to introduce the new kinds of rays called the “diffracted

rays;’ which together with the geometrical optics rays,constitute the total

field. In our problem, viz., source radiating in the proximity of the smooth

object, the diffracted rays travel along the curves on the surface of the

scatterer. By applying Fermat’s principle to these surface rays, we conclude

that the above—mentioned curves should be geodesics on the surface of the body.

In the GTD procedure, one assigns a value to the field along each ray of these

surfaces. The total field at any point in the space is the sum of the fields

due to various rays (incident, reflected and diffracted) passing through that

point. An important advantage of the GTD approach is that it can be applied

to both scalar (acoustic) and vector (electromagnetic) problems and to smooth

convex objects of an arbitrary shape.

Consider the problem of determining the radiated field of a scalar point

source located on the surface of a smooth convex opaque body . If the observation

point is in the shadow region, the ray paths originating at Q and reaching P

(observation point) are comprised of two sections. One of these sections follows the

straight line path P
1
P, while the other travels along a geodesic on the surface

(Fig. 8). Let us consider the propagation of the field along each section separately .

a) Rays in free space: Behavior of the fields along these rays can be

determined by obtaining a high—frequency asymptotic solution to Maxwell’s —

equation m a  source—free homogeneous isotropic medium. We begin with the

Luneberg—Kline asymptotic expansion of the electric field ([111 and [12]):

-jk S()
- k

T 
e ~ (jk)

m 
e (r )  (21)

m 0
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S Observation point

Figure 8: Diffraction by a smooth convex body when the observation
point is in the shadow region of the source Q .

Caustic lines

~~~~~~~~~~~~~~~~~~~~~~~~~ dA dA

Figure 9: Diverging pencil of rays in free space.
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and insert it into the Maxwell’s equations. This results in the following

equations governing the propagation of electromagnetic fields along the rays.

— 1 (Eikonal equation) (22)

2(c’S•
~~
)
m 
+ 07

2S);
m 

= ~~2 

~ 
(Transport equation) (23)

~7S~~ — — c ’4 (Gauss ’s Law) (24)
m m-l

e 1 
0, m 0, 1, 2,

The zeroth—order solution to the above system of equations,which turns out

to be in agreement with what one would obtain by geometric optics, may be

written as

E (a)  - E
0
(O)e 0

~~~~ 
~-jk0

a 
(25)

~~~ ~~~~~

where a is the distance traveled along the ray from the reference point

O(~~O) on the ray path. p
1 
and are the principal radii of curvature of

the wavefront at a—O. It is apparent that the expression fails when a——a
1 
or

a = 

~~~ 
i.e., at the caustic lines (Fig. 9). In the cases where it is

convenient to choose the point of diffraction on the surface of a body as

the reference point 0, the formula (2.5) should be modified as follows

E( a)  - 

~~~~~~ ~/~~~~a) e (26)
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In these cases, the point of diffraction itself is a caustic, and p is the

distance between this point and the second caustic .

b) Surface Rays: These rays follow the surface S along the geodesics

into the shadow region, and shed off energy tangentially as they propagate.

In order to study the behavior of the field along these rays, we introduce a

special ray—fixed coordinate system,a,n,b.

: Unit vector tangent to the ray; ii: outward unit normal to the

surface; and b — x n or binorisal direction; a vector field can be decomposed

into its components along these unit vectors as

• 
~~
= E a + E n + E

b
b (27 )

At this point, several important assumptions are introduced in the GTD

approach [20]:

i) ~ and are orthogonal to each other and to the ray.

ii) Variation of the phase of the field along the ray is

the same for both fields.

iii) E
n 

and E
b 
propagate independently , and E — 0.

iv) E,
0 
satisfies the scalar wave equation (V2+k2) u=O with the

boundary condition u 0  on the surface S,while En 
satisfies

the same equation with the boundary condition -
~~~~ = 0.

The next step in the GTD approach is to conjecture,on the basis of the

solution to some canonical problems, that the surface field propagating along

each ray is comprised of an infinite set of “modes.” Along a ray—fixed path

GTD assigns a complex value to each component of the field associated with

the individual modes. The propagation of these modal field is described by

the equation

• 19
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a(a) = A(a) e (28)

when a is the distance between an arbitrary point along the ray and the source

Q and is the phase of the field at the source point. Next, invoking the

principle of conservation of energy between two adjacent ra$rs, and using the fact

that the surface rays shed energy off tangentially , we can arrive at the

following expression for a(a)

a(a) = ~~~~~ exp [-jka — a (a’)da ’1 (29)

where n(a) is the “attenuation constant,” K is proportional to the strength of

the source,and d~V1, d~~ and p are shown in Figure 10. The quantity

indicates the spreading of the surface ray tube” as it travels along the surface.

Equations (26) and (29) describe the laws of propagation for the rays which

originate from the source point Q, are diffracted at P1
, and reach the

observation point P. To complete the solution, we need to determine the actual

values of the fields from these equations. These require the knowledge of

and K, which, in turn, are related to the initial values of the rays QP1 and

as well as the attenuation constant ct(a). The initial value of the field

at Q is related to the strength of the source by L(Q), the so—called “launching

coeff icient,” while the initial value of the field at P1 is related to the

actual field on the surface at P
1 

through the “diffraction coefficient” D(P
1
).

If we now sum up the contributions of all the modes, we obtain the final

solution [25) for the field radiated in the shadow region by an infinitesimal

magnetic dipole of strength ~ located on a smooth convex conducting body

20
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Figure 10: Divergence of surface rays.

~~~
— 

~~~ Observation
point

Figure 11: Geometry of the cylinder problem.
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~~(P) = [~ (Q)~~(Q1)F + &(Q)6(P 1
)G] 

~~~~~~~~~~~~ 

e ’~~~ (30a)

where

- zi
~

!T’
~~/d~~ ~ L~ (Q)D~ (P1) exp [f 

h(,)d ,

p’i ° (30b )

and the expression for G is obtained by replacing the superscript “h” by

“s” in (30b), where h and s stand for hard and soft boundary conditions,

viz., u=O and au/an o , respectively. The quantities ~~~~ D~~
S and

appearing in (30b), in general depend upon the local geometry and the

electromagnetic characteristic of the surface, frequency k, and the mode of

propagation. They are determined by studying the asymptotic expansions of

the exact solutions of some special canonical problems. Keller and Levy

([20] and [27]) have derived the first few terms of the asymptotic expansions

for D and a by considering the canonical problems of scalar diffraction by a

circular cylinder, sphere, elliptical and parabolic cylinder. A study of the

above—mentioned asymptotic expansions and the works of Franz and Kiante [28]

and Voltmer [29],who have also investigated the same problem, as well as a

comparison with the results of the “direct integral equation approach,” reveals

the following characteristics of the solution: i) the first—order terms in

the asymptotic expansion of D and a are independent of whether the problem

under consideration is scalar or vector ; ii) the first-order approximation of

D and a are dependent only on 
~a’ 

the radius of curvature of the surface along

the ray; iii) the second—order terms are functions not only of 
~a’ 

but also of

d2p d2p
a , a, and p (the radius of the curvature of the surface transverse

da d~~ 
an

to the ray). Finally , the higher—order terms are different for scalar and

vector problems.

22
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The leading terms in the asymptotic expansion of “diffraction coefficisnt”

D, “attentuation constant” a and “launching coefficient” L are presented below:

“Soft ” polarization:

. 2~~’~
’
~ 

. p1/3 . e~
j 7 T hh]

~
2

[D~]
2 

— 1/6 
a 

(31)
k . [Ai’(_r~)]

r ‘ e~~
’
~~

6 kp 1/3
— 

p 
(—j-~) (32)

2/3
= e~~”~

’2 (2rk)1/2 ( ..L..) . Ai’(—r ) . D (33)

“Hard” polarization:

1/2 
2
5
~
’6 1/3 

e~ 1~~
’12

h 2  p
a[D] — 

l’6 2k ‘ ‘ r’ . (Aj (’..’r ’ )]
p p

, j-ir/6

= 

r 
( 0)1/3 (35)

- ei~~~
2 
. (2nk)1/2 (2 )

1/3 
. Ai(-r’).~ D

h (36)

where Ai(x) is the Airy function:

Ai(x) = f cos(-~’ + xt) dt (x real) (37)
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and Ai(—r ) — 0, Ai’(—r’) — 0, (Ai’ is the derivative of Ai with respect

to its argument). Higher—order terms in the expansion of D, a and L have

been given in [25] and [30] and in some of the other works on GTD mentioned

earlier.

The expression (30) is convenient to use in the lit region. In the

shadow part of the transition region, since the ex~onentia1 decay of the terms

in (30) is weak. The convergence of the series representation is very slow.

• Furthermore, the series diverges in the lit part of the transition region.

Consequently, in these regions, it is more reasonable to use an integral

representation for the surface ray field, which, in our case, can be expressed

in terms of Pock functions [25].

• Attempts have been made to establish the mathematical validity of GTD

and to minimize its - “nondeductive parts” (parts which are based upon physical

intuition or the study of the as~?mptotic solution of some simple problem

geometrical concepts of different kinds of rays, diffraction coefficientá,

attenuation constants, etc.). Kravtsov [31] and Ludwig [32] have

analyzed the field near the caustic surface (smooth envelope of a family

of ray), and have developed a “uniform asymptotic solution” in the sense that

it is finite at the caustic and reduces to geometrical optics away from the

caustic.

3. Generalization of GTD and Investigation of Alternate Methods

3.1 Generalization of GTD to Arbitrary Surfaces

Keller’s generalization of GTD for the analysis of the field diffracted

from a smooth convex object is closely related to what is known as the

“boundary layer technique” in the theory of differential equations [43). On

the other hand, the “uniform asymptotic theory” is analogous to the method

used by R. E. Langer and F. J. Oliver to find the asymptotic solutions of the

24



- --- . — . -- • • .- — -- • .-  —•-- ---~~------ —‘U’

second—order differential equations near their “turning points ,” which are

counterparts of the transition regions in our case [ 3 31 ,  ~34], and (35].

The procedure is based upon the generali’ationof the geometric optical

interpretation of the circular cylinder problem. The solution obtained by

this method involves some functions with unknown phase and amplitude, similar

to Bessel and Hankel functions. Since the surface of a smooth object is

actually the caustic surface of diffracted rays, the above—mentioned formulation

is applicable in this case, too. Lewis, et al. [36] have modified this

solution to make it satisfy the boundary condition on a convex body. Using

ray formalism, they have obtained an asymptotic solution in a complicated form,

which they call “creeping wave” and satisfies the boundary condition on and is

uniformly valid near and away from the surface. It should be mentioned that

the method has been developed primarily for scalar diffraction problems .

Creeping waves tt~at are traveling on the surface of the body generate

other kinds of diffracted rays in the presence of the irregularities in the

geometric or electromagnetic characteristics of the surface. The effects of

discontinuity in the surface curvature, its higher—order derivatives,

or the surface impedance have been studied by many authors [37], [38],

( 3 9 1  or [40]. An exhaustive study of various diffraction

mechanisms and corresponding diffraction coefficients,

and constants associated with the propagation of creeping waves, has been

carried out by Albertsen (41].

At this point, let us examine one of the most important features of GTD

and its various modifications. GTD formulation is essentially scalar in nature

and is heuristic in some parts . Thus, when GTD is applied to a vector problem,

it is not surprising that the coupling between various components of the fields

25 
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are neglected, and each one of them is treated as an uncoupled scalar wave.

The other assumptions in GTD are concerned with the directions of th ese field

components and the kind of boundary conditions they satisfy (see Sec. 2.4).

As mentioned earlier, non—deductive parts of GTD are based on asymptotic

expansions of known solutions to some selected “canonical’ problems. Quite

often these canonical problems are not general enough to fully and accurately

describe the local behavior of the field for an arbitrary structure. Finally ,.

most of the canonical problems investigated are two—dimensional in nature. The

only exception to this is the sphere. However, in so far as the geometric

properties of the surface are concerned, the sphere is a very special case

since its radius of curvature is the same in all directions and,consequently,

the surface rays are torsionless. Finally, GTD fails when the observation

point is located in the transition regions, shadow boundaries or in the neighbor-

hood of a caustic. In each of these regions, one needs to carefully modify the

GTD formulas a~d often aich a modification is not too simple. Nevertheless,

in spite of these difficulties, GTD is recognized to be a powerful high—frequency

technique for computing the leading terms of the asymptotic solution. Two of

the principal attributes of GTD are its simplicity and wide scope of application.

3.2 Spectral Domain Approach

We now examine an approach different from GTD which uses the spectrum

of the induced current, or the expression for the radiated field, as a starting

point. In order to gain a better insight into the curved—surface radiation

and scattering problem and to verify the basic assumption of GTD, it is

worthwhile to consider such alternative approaches, particularly if they apply

to canonical problems which are more general in nature than those employed to

derive the GTD results. An example of such a study would be to consider the

26
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case of surface ray propagation with non—zero torsion, a situation that occurs

when a magnetic dipole source radiates from a location on the surface of a

circular cylinder.

The geometry of the problem is shown in Fig. 11 (p. 21). The radius of the

cylinder is a and the source,which is an infinitesimal magnetic dipole with

density ~,is located at the point Q desdribed by the spherical polar coordinates

(r— a, e=90G , 4~’~’O°). Each point P on the surface of the cylinder is defined by a

“geodetical polar coordinate” system (a ,B), where a is the arclength of the

geodesic connecting Q to P and B is the angle between ~ (at point Q) and

geodesic QP. The local orthonormal basis vectors (~ ,8) are also associated with

these two parameters. The observation point in the far field is specified by

its spherical polar coordinates (r,e ,q). The radiated field at an arbitrary

point can be expressed in terms of two potentials, ~ ar~ ~, which, in cylindrical
coordinates, can be written as:

— 
* 

~~~~~~~~ 
1 f(k ) . H

~
2
~
(k
~
P) 

—jkZ 
dk (37)

— -
~~~
- 

~~~~~~~ f g(k ) H~~
2

~ (~~~~~~) 

-jkZ 
dk (38)

For the problem under consideration, we can express the spectral weight

coefficients as

jwcM
f ( k )—

fl Z 
2~rk

2
H~
2
~ (k a)t n  t

-M nkM
g (k ) = (2)’ + 

z~~~ (40)
~ Z kH (k

~
a) 2rk

~
a
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where

1/k
2 _

~~~~ , k > k

(41)

L 
—j/k~-k

2 , k < k

In order to derive an asymptotic expansion of (37) and (38), we proceed

as follows. As a first step, we apply Watson~ transformation to the infinite

summation with respect to a and employ appropriate asymptotic formulas for

Hanke]. functions with large order and argument to derive the following expressions

f or (37) and (38) under the conditions that ka is large and ~ small compared to ir:

- 

~~~~ /~iT ~j~ /4 f dk ~~~~~~~ 

k
512 ~ 

~~~~~ 

(42)

jM j-rr/4 . k
- 

2 
e 
2 f dk

~~
. 
~~~~ 5/2 Um~~~~1) + 2m

3
g0
(~1
)]

(211)

(2ir)~ 

a • 
e 

/0 dk
~ 
. ____ • (43)
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where

— k z  ÷

m (k
~

a/2) 1/3

= m(q— i~/2)

f
0

, g~ , g1 = Pock’s functions defined in Appendix A.

M~ and M components of ~, (~~n=0)

Next, applying the “saddle—’~o1nt” technique to (42) and (43) and keenIng only

the first—order terms, the far field can be written in terms of its components along

the normal and tangent to the surface at the “stationary point” P1 
as

-jka -jkR
E — (MB

1
) (ike ) .  g(~1 ) 

e
R

_____________ 
—jka ~~~ 

1/3 e
_jk

~+ 4rr e • (
~y..) 

~~~~~~ R (44)

~~~~~~~~~~ ~~~~~~ 

2/3 
— ka 

_____E8 
— 

211 (j~) e f
0
(~~~)
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where

P
1
: is the stationary point of ~ which turns out to be the

same as the point of diffraction predicted by GTD.

~ls 
= (

k~)
l/3 
(p—11/2) . sin1/3 e

p — radius of curvature of geodesic QP
1

a — arc length QP
1

R = the distance between the point of diffraction P
1 

and

the observation point

— 
~2 

~ 821 normal to the surface at P1

The details of the derivations of (44) and (45) are given in Appendix B.

Fig. 12 illustrates the geometric meaning of some of the parameters

appearing in (44) and (45), for the observation point is located in the shadow

region. In this case, 
~1s’ 

which is identical to ~ given in (16), is the

reduced distance traveled by the surface ray before leaving the surface

tangentially.

In the lit region, the geometric interpretations of a and ~ are shown

in Fig. 13. The rays,like QP1P, that do not obey the generalized Fermat ’s

principle are called “psuedo—rays” [25). The ray QP
1
P appears to travel along

the surface up to the point P
~ 

and then leaves the surface at P
1 

tangentially

in the opposite direction, to reach the observation point P. It should be

noted that formulas (44) and (45) give us the contribution of the ray which

30
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direction

\ Point of

0 diffraction

Figure 12: Diffraction of rays by a cylindrical body .

/P /Observation
direction

ray
0 Source

c7< O

~~
< O I

Figure 13: Diffraction of ‘psuedo—rays .”
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travels along the shortest path on the surface, and thus, suffers the least

attenuation. It is not difficult to see that, in general, there are infinitely

many rays which contribute to the total field at any observation point. However,

their contributions are very small compared to that of QP
1 

and their phases and

amplitudes can be determined in a similar manner (Appendix B). Several other

remarks on the formulas given in (44) and (45) are in order:

a) Numerical results indicate that good agreement between (49),

(45), and the exact modal solution is ob tained for ka > 10.

b) The zeroth—order terms in the asymptotic expansion of the normal

component of the field E are identical to those given by GTD;

1/3however, the k terms derived from the two approaches are

different.

a) Tangential component of the field, E
B
, given by (45), also

is different from the corresponding expression based on GTD

by a multiplicative polarization factor. Specifically ,

(j
~

.c
~ )(45) 

~(cos~)S~~~Y
’ (GTD) (46)

Consequently , our results agree in GTD only for the circumferential

ray , i.e., for B O.In addition, for an axial t agnetic dipole

= 0), GTD gives a nonzero value for the field in the 
~2 

direction

our solution predicts that this field is identically zero, a result

• which is in complete agreement with the exact solution for the

problem.

In contrast to GTD, formulas (44) and (45) are valid in

respect to the location of the observation point, be it in the

lit, shadow or transition regions. Although not valid in the paraxial

region (8900) ,  they can be generalized to work along this direction.
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Finally , let us consider the possibility of the generalization of

(44) and (45) to other convex surfaces of more general nature.

By “more general surfaces,” we mean those surfaces which are not substantially

different from cylinders, some examples being cylinders with noncircular

(elliptical, hyperbolic and parabolic) cross sections and conical

surfaces with small apex angles. The key step in a syste.ma~.Lc approach to

generalizing (44) and (45) is to use the generalized defini:lon of ~ given

in (16).

Fig. 14 exhibits some initial results of the generalization of these

formulas to the case of a cone. It is evident that results obtained from

the present approach agree quite, well with the series solution which is rather

tedious and time—consuming. We also observe from Fig. l4c that there is a

noticeable discrepancy between the analytical solution and the experiment. Thus,

within the range of experimental error, our results agree quite well with

those published in the literature.

3.3 Approach Based on an Asymptotic Evaluation of the Radiation Integral

of the Surface Current

As a final topic, we consider an approach based on the asymptotic

evaluation of the radiation integral expressed in terms of the induced surface

current which is itself derived in an asymptotic manner for surfaces with

large radius of curvature.

It was shown in Sec. 2 that Pock’s theory can provide us with an

expression for the scattered field in the neighborhood of a smooth convex

body illuminated by a plane wave. Using this solution in conjunction with

the reciprocity principle, we can find the far field radiated by a point source

located on the surface of the body . By generalizing the definition of ~ in

33 
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Figure 14: Comparison between spectral domain results (UI),
modal approach (Hughes), and experimental measure—

• ments (Hughes). The UI results are derived from a
generalized version of (44) and (45) for a cone.
The Hughes’ results have been reproduced from [63]
and are based on a modal series of 13 terms. All
results are for 1/2 radial slot on a cone of
half—angle 10°.
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Pock’s theory, we can also write the final result in a GTD format and represent

it as a surface ray. The total field at a point on the surface is obtained

by adding all the possible rays which reach the observation point P. Various

techniques cai be used to determine the field propagation along these rays.

For instance, when the source is located on the surface, and the surface is a

conical one, the field at each point can be decomposed into two parts.

(47)

where F
1 
is the geometrical optics field when the observation point is directly

illuminated by the source, and is the creeping-wave contribution derivable

via an extension of Pock’s theory when the point is in the shadow region. The

other term, F2, is the so—called tip contribution, and can be obtained by

physical optics or GTD. Goodrich et al. [42] have applied this procedure to

find the radiation pattern of slot ar-rays on cones.

The approximate induced surface current distribution can be obtained by

Fock’s theory, GTD (13], (14], [16] and [25] or some other appropriate high

frequency technique. The induced surface current due to a magnetic dipole on

a perfectly conducting circular cylinder and cone has been calculated by Chang

et al. (44], and Chan et. al (45] whose procedure is based upon an asymptotic

expansion of the exact modal solution to the above—mentioned problems. Lee,

et al. ~46] and (22] have treated the same problem by a method based on

Pock’s asymptotic solution of the problem of a sphere [47]. These expressions

for the current distribution can be used in the radiation integral representation

of the far field.

The numerical evaluation of this integral is a formidable task, especially

when the frequency is very high. Thug , it is highly desirable to have an

analytical and explicit formula for the far field expressed in terms of the
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surface current. We now discuss an approach for accomplishing this task and

examine the problem of deriving an asymptotic expansion of the far field

radiated due to a point source located on the surface of a smooth, conducting,

and convex body of an arbitrary shape.

Consider an arbitrary smooth convex surface S shown in Pig. 15. Let

a magnetic dipole source be located at a point Q on S. We parametrize the

surface S introducing a “geodetical polar coordinate” system with the pole

located at Q such that an arbitrary point P1 
on the surface is defined by a

• pair of numbers (a,8), where is the arc length of the geodesic QP1 and

is the angle between QP
1 
and some reference direction at Q. Unit vectors

along the constant parameter curves ~ and B are locally orthogonal. The

unit normal to the surface, n, is given by a — ~ x 8. An element of length

in this coordinate system may be written as

ds2 = da2 + G d8
2

(48)

The radiation integral for the scattered far field can be written

= 
1 U  f f  ~ (l—RR ) 

exp(—jkR) dS (49)

where R is the distance between any point on the surface and the observation

point. In the geodetical polar coordinate system, we can rewrite a scalar

component of (49), say M, in terms of a double integral of the following

general form

M = 

D 
F(a,8,P) exp(;

jk(R+a)] 
~~ da d8 

(50)
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Figure 15: Source radiation in the presence of a smooth convex surface ,
parametrized by geodetical polar coordinate system .
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where we have assumed the following form for the surface current:

= ~~(P 1
) exp(—jk

1
a) — + J

8
8

(51)

— k — jk
2
; k — 21T/A , k

2 
> 0, k

2 
<< k

where l(P
1
) is a relatively slowly varying function when k, the free-space

wave number, is large. This assumption is based upon a close scrutiny of

different asymptotic formulas given for the induced surface current.

When the observation point P is located in the shadow reQion, th~

main contribution to (51) comes from a small neighborhood of the stationary

point of the integrand ,and the stationary phase method for multiple integrals

((48] and [49]) is applicable. The asymptotic expansion of (49) has been

derived up to the order k 5
~
”3. The details of calculation have been presented

in Appendix C. The final result is

-~~ 
- 

ic2 

~~~ 
+ + 0(k ’6)) (52)

where

U
0 

= B 76~/R(R#P~ 
. e~~ (53)

- [ (AJ
8 

+ -i-- (J ~~~~~~~~~~~ + (B38 + CJ
a
)fl]

(54)

D
1 ____ —ii~i~

k
7”6 

~~~~ 
(R+ P

g
)R e
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r~ ~~TT~~~~

- e~~~~
4 . 65/6 r(l/2) . r (l/3) . p 2/3

D1 — 
—je 

. 6
71’6 

. r (2 /3) • r ( l/ 2 )  
~a 

(56)

A, B, and C are dependent upon geometric properties of the surface at the

stationary point which turns out to be exactly the same as the “point of

dif f rac tion” of surface rays. The quantities A, B, and C are given by

A = ~~~ ~~~~~~~~~~~~~~~~~~~~~~~
-
~
-)+

~~~~~~~[~~

(57)

+ (L8°)2 — (l/2)~---
~
] + 0 (-i)

B - L8°/G112, C = — 1/na 
(58)

where

= radius of curvature of the geodesic

geodetic radius of curvature

L88 , LB0 — coefficients of the second fundamental form of the surface (S)

A geometric interpretation of these parameters has been illustrated
0 1/2

in Fig. 16. It is evident from this figure that 
~R(R.f~ 

) ] is simply the

divergence factor of the rays leaving the surface tangentially at the point

of diffraction. In using formula (56), we should bear in mind that the

various terms in U0 
and U1 are not of the same order. For example, in the

deep shadow , is exponentially larger than J
8
.
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Figure 16: Diffraction of rays by a smooth convex body and geometric
meaning of quantities ~g

, 0a 
and R.
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______  
C

Re (v)

4
D -

-

Figure 17: Paths C and D in Watson transformation.
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The formulas given in (56) have been tested and compared with other

available solutions. An important conclusion derived from this comparison

is that although the method of radiation integral is based on less restrictive

assumptions , it is perhaps not as useful as the spectral domain approach

because the stationary point of the phase of the integrand in (50) is of the

second order , and hence, the asymptotic expansion of this integral converges

rather slowly except when is very large (:40 or more).
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APPENDIX A: FOCK FUNCTIONS

In studies of radio—wave propagation around the earth by Van der Pol,

Bremmer , Pryce , Fock, and others, and also the later studies of diffraction

of electromagnetic waves by certain bodies of revolution ([51],[52],(53),

[54],[55],(48],(56],[57],[58],[59],(60] and (50]), a class of universal

functions was introduced which can be used to predict the amplitude and the

phase of the reflected or diffracted field by smooth convex surfaces [17].

An exhaustive treatment of these functions which, in general, are defined

as Fourier integrals having combinations of Airy integrals in their inte—

grands, has been carried out by N. A. Logan (61]. (See also Bowman , et al.

[1] and Logan and Yee [17]).

Since the first extensive application of these functions to diffraction

theory was done by Fock, many authors named them after him. Here we list

only the most important formulas and expressions for these functions without

going through the details of their derivations. We have followed Logan’s

set of notations for these functions [61]. However , since his time dependence

factor, exp(—iwt), is different from one we have used throughout this paper ,

namely exp(+jwt), our expressions, listed below , are conjugates of what

have been presented in [61].

First we start with general definitions. Fock’s most general form of

the “Van der Pol—Bremmer diffraction formula” is

V(x ,y
1

,y2,q) — exp (j~ /4) • F J . 
~~~~~ w2~t - y )  . [v(t — y<)

- : w2
(t - Y>) ]dt (A.l)
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where w
1
(t), w

2
(t), u(t) and v(t) are Fock—type Airy functions, defined as

u(t) = v~~ Bi(t) , v(t) — A~ Ai(t)

w
1
(t) = u(t) + jv(t) , w

2
(t) —

We note that w1 
and w

2 
can also be def~ned as in Sec. 2. y> and

y< are the larger and smaller of the two numbers y1 
and y2. V(x,y1,y 2,q) is

proportional to the attenuation suffered by an electromagnetic wave generated

by a source located at reduced height y1 
above the surface of a smooth con-

vex body , when it reaches the observation point located at reduced height

above the same surface. x is the reduced distance between the source and

the observation point along the surface, and q is dependent upon the impedance

of the surface. Let us consider some useful limiting cases.

When y
1 

= y2 = 0 , then \T(x,O ,0,q) is denoted by V0, where

—jxt

V0
(x ,q) = 

e~~~
4 J~• 

~~~~~~~ ~~~~~~(~~~ ) 
- 

~~ 
. dt (A.2)

~1e also have

j~r/4 ~~~~ w2
(t)

v(x) = V
0

(x ,0) = 2 J J~, w~(t) 
dt (A.3)

—jxt
2 ~~j 3h1~ f4  

3/2 e w2(t)
u(x) = lim (_2jxc V0

(x ,q)] = . x 
w2
(t)

(A.4 )

When y
1 

= 0 and y2 ~ ~, then V + V
1

(x ,q):

1 ~~
_

~~Xt

V
1

(x ,q) = 
w~(t) 

- qw2
(t) 

. dt  ( A.5 )

and also

~ —jxt
g(x) = V

1
(x ,0) = 

~~ J~~ 
w~(t) 

dt (A.6)
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r r~~ 
— jxt

f ( x )  lim J — qV (x ,q) = 
e 

dt (A.7)
• q—~ 

~ ,~
;- j , ,  w 2

( t )

Based on Equations (A.6) and (A.7), a class of functions can be

defined :

f~~~~(x) = . t fl . e~~
’
~ • dt = 

d~ f(x) 
(A.8)

r w2
(t) 

dx
1
~

g~~~ (x) = 
(~~~)

n 

J ~~ . dt ~~~~~ (xI (A.9)

where r is any path in the complex t—plane which comes from —~~ in a sector

def ined by — ~ < arg(t) < — -
~~ and goes to +°o inthe sector —

~~~ < arg(t) <

In what follows , we will give the suitable formulas for f(x) and g(x) in

different ranges. Tabulated values and graphs of these functions can be

found in [57],[54] and [61].

When x is very large and negative, the following asymptotic expansions

for f(x) and g(x) can be used (61]:

f(x) - _2~~€
ix

3
/3[1 + + 

1 
- 
jl75 

- 

~~~~~~~~~ 

+ ~~~8l75 
+ ...~~~~~ (A.10)

4x 2x 64x 16x 1024x 
J

g (x) - 2e3~~~3[l - - + + - 
_ _ _ _ _ _  -. . . .\ (A.ll)

L 
4x x 64x 64x 1024x

The above formulas are valid and accurate for x << —1 . For moderate

values of x, namely ,  —l < x < 1, it is difficult to find an appropriate

expression . Although there are some analytical techniques like “stationary

phase method” or “Poisson summation formula” which may be used to evaluate

f
(fl) and g~~~ for these values, another possible way which is probably easier

and more efficient is to interpolate the tabulated values of these functions

in this range.
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In the vicinity of zero (lx i 0), the Taylor expansion can be used

to calculate f and g. The coefficients are given by

f(n)(O) = ~~
j(5nTn/6 TTj~3) . b/;;- 

[
3ff) 

(2/3) (n—1/4) 

~ 
A (ti) • [2]

2m

rn-U

r[2m — 
4n— 1 , (A.12)

g
(t~~~ (~~ ) = e

_j5
~~

/6 
. . [~) (2/3)(n—3/4) °° 

B (n) [2]

2m

T(2m - , (A.13)

where -r(X,i) is the generalized “tau” function:

r /

= ~ , X > 1 (A.l4)
n=0 (n +~~)

A
0
(n) = 1 , A1

(n) = -
~~~

- (ii — 1)

A2
(n) = 5[5n

2 
- l43n + 26385)/(29 . 3

2
)

B0
(n) 1 , B

1
(n) = —7(n — 3/2)148

B2
(n) = (49n2 + 364n + 39849/l6)/(2~ . 3

2
)

When x is large, and positive, residue series can be used to compute

(n) (n)f and g
n —j5ir/6(r ) exp(r x • e )

~~~~~~ 
j (2+7n) n /6 

Ai ’(— r ) (A.15)
p—i p
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n—i , —jsv/6

g~~~ (x) = ~~ 7hh uh uI’6~~ 
(r
n

) exp(r  • x  • e 
(A.l6)

where Ai(— r )  — 0 and Ai ’(—r ’) 0 for p = 1,2,3 .
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APPE~1DIX B: DERIVATION OP FORIIULAS (44) and (45)

Here, we consider only the derivation of the asymptotic expansion of

~ for a circumferential magnetic dipole. In this case, ~ may be written

as: —jk z
z

~jWcM~ ~ 
e S(k )

dk . 
2 

(B.i )
(2v) J Z

where
H~
2
~~kS(k

~
) = e n 

(2) (3.2)
H (k a)
n t

Applying the Watson transformation to (B.2),

}I
~
2
~

(k
~
P) -jv(~-ir)S(k

~
) = 

1C+D H~
2
~ (k a) 

e • dv (B.3)

where C and D are shown in Figure 17. Or ,

cos v (i r  - 
~~ ) H

~
2
~

(k
~
P)

S(k
~
) = (2) dv (B.4)

~~—~~‘ sin ~ H (k
~
a)

Substituting the expansion

2 —jv (c~ +2ni)cos — 

= j ~ e (B.5)sin v~r i—i 1=0

where c
~l 

— $ and •2 
— 2ff — ~, in (B.4), the result will be:

S(k
~
) - - 

2 H
~
2
~

(k
~
P) 

e~~~~~~ • dv 
(B.6)

i—i 1—0 —
~~~ H (k

~
a)

Each term of the above expansion is associated with a “creeping wave”

travelling in a counterclockwise (i — 1) or clockwise (i = 2) direction

around the cylinder . Following the ray concept , each creeping wave
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appears to be travelling along a specific surface ray. Now, as o +

(f ar zone) for each f ixed v , we have [62]

H
~
2
~

(k
~
p) - e

_J (k
t0 2

~~~
4) 

(B.7)

On the other hand, it can be shown that the significant contribution

to S(k
~~
) comes from a small neighborhood of k

~
a. In this neighborhood , where

k
~
a and v are large and close to each other (Ik

~
a — vi ~ Iv i ”~), the Rankel’s

asymptotic expansion (B.7) is not valid any longer. In this case, it is

necessary to expand Bessel’s functions in terms of Fock—type, Airy functions ,

• w (t) and w
2
(t), and their derivatives [16]:

H~
2
~ (x) - —a-- w (t) - 1 

~4t w ( t )  + t
2 
w ’(t)) + ... (8.8)v nw’~ ~~

2 60m2 ~ 2 2 j
- ~~~~~~(t) + 

1
2 [4t 

w~ (t) + (6 - t
3) w

2(t)) 
+

L

where
( — 113lx i  v — x

in = 

~
-
~-j m (in is very large)

Inserting (B.7) and the first—order terms of (B.8) and (B.9) into (B.6)

and (B.l), we obtain

- • j~r. e~~”4 i~l 1L 
f~~~ 

dk . e 11 
~~~

(B.l0)

where
1/3

in = (k
ta/2)

— k z  + k
~
fP + a(

~ i 
+ 2ffl — ff 12)]

= nt (~~~ + 2~ri - ff 12)
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• Introducing a new integration variable a:

• k
~ 

= k sin a (3.11)

• k
~ 

= k cos ~ (B.l2)

• 
B 

— .tan~~ (z/ [ P + a(
~i 

+ 2-ri — ~r/2)] } (B.l3)

we have :

= kR.1 cos(Bii 
— a) (B.14)

where

R11 
=~~

2 
+ [p + a(~1 + 2-ri - /2)~~

u/2

Now (3.10) takes the following form:

- 
_____ • 

3/2 e~~
’4 

• 

~ J 
da . 

~
_
~kRiic0s~~

_B
i1
)

(2ir) k i=i l=0 y

cos 516 a (B.i5)

y is the path of integration in the complex a—plane, which is shown in

Figure 18.

Now we deform the path of integration into the “steepest descent path ,”

SDP , passing through the saddle point of the phase of the integrand . Per—

forming the “saddle point integration ,” we can derive the asymptotic

expansion of (B.l5) for large kRii. The first order term is:

- 
____ . j v / 2  ~

k ]
~~~~

3 

. (cos 8ll)~~
’
~ 

• 
e 

R~15

2irk i~l i 0  ils
(3.16)

where R11 and 
~ils 

are the values of these parameters at the stationary point

specif ied by a —



~~~~~~ - ---- ----—-—-~~‘ -~~~~~~~- —. --- -— ---- --. -
~~~

------ -----_--- -_- _ .
~~~~
———

~~~ ~~- -~-— -‘uuuii1~

im (a)

I
T 

~~42 Re(a)

SDP
(fl I

Figure 18: Steepest descent path (SDP ) for integral (B.i5).
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Eqn. (B.i6)is the creeping-wave representation of the far field. If the

cylinder is large (ka >> 1) and 
~~~J is not very close to ir, then only the

first term (i = 0, 1 — i) has the most important contribution to the total

infinite sum, and the other terms are not significant. Neglecting the other

terms , we obtain the result given in (44 and 45). It should be emphasized

that (44) and (45) are not valid when 18 ! is close to -/2 (paraxial region),

because in this case, k
~
a is very small, and (8.7), (B.C) and (3.9) no longer

apply.

The other formulas can be derived in a similar manner.
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APPENDIX C: ASYMPTOTIC EVALUATION OP THE RAD IATIOII HITEGUAL

Consider the following double integral:

u(k) — 

‘D’ 
g(x,y) . ejk(~~~) dxdy (C.i)

where g(x,y) is rather slowly varying, and •(x,y) has a stationary point

(x ,y) inside domain D. The objective is to derive an asymptotic expansion

for (C.1) when k is large.

Suppose g and $ have the following forms around (x ,y ) :
= 3

• ( ~~~~~~~~~

J g(x ,y) — (x — x )  (y — y
5

) g
1

(x ,y) , A
tD~ ~~, 

> 1

S (C.2)

~~~~~ 
- p(x , y)  + a d O (x — x ) ~~(l + P(x ,y)] + b0_ (~ - ~~~)

T (1 + Q(x ,y)]

N. Chako [48] has derived the following asymptotic series for U:

A + p  ~ +q
U(k) - • ~ Apq (~1 

+ a
2

)(8
1 + 82) ~~ ] . 

r[  

0~~ Jp , q 0

1 1 (C.3)
A /S

0

where

B = ___________ . 1 i 
• 

jk4(x ,y )

0 
e s s

(ka~~ 0) (kb
0 _

)

a1 
- exp(j (A 0 + p)/ (2~ )]  , a2 exP [[J_/(2â)][(X0 + p )(26 + e~~~) - 26)

]

exp(j(~~ + q)/(2i)] , 8
2 

- exP[(i /(2T)][(uo 
+ q)(2t + e~~~) 

- 

2T))
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g1(x ,y) a 
8
k 1

(x - x )
k
( - )1

k,l=0 ‘

r in nP(x ,y) L a (x — x ) (y — ‘ )
m+n>l ma s s

r in nQ(x ,y) = i~ 
b ( x  — x )  (y —un -ti>1

air, b
A - A - (A00 0 0 ’  10 10 00 0 6

a b~~~
A01 = g01 

- goo[p 
+ + 1) •

In order to apply this procedure to the integrals of the type ¼ i . 4 )  for

which

~~x,y)  —~1(a,8) — —(R + a) (C.4)

g(x ,y) - F (a ,8, P) -
~~~~~~ (C.5)

tThen F is one of the components of ~(l — ftk), one should first determine

the stationary point of ~2, wherein its first—order derivatives vanish. The

second step is to compute the various order derivatives of ~ J , R , .. . ,at

this point , and then insert them into (C.3). We just give the main formulas

needed for these derivations.

Suppose the surface of the body, ~ (a ,8), is parametrized by a geodetical

polar coordinate system. As discussed previousiy ,in this system, a is the

arc length of the surface geodesic connecting the pole Q to ~ (a ,8), and B is

the angle between the geodesic and some fixed reference geodesic at Q

(Fig. 15).

The element of length in this system is given by

ds2 = da2 + G(a ,8) dB2 (C.6)
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Let us denote d~ (u)/du by 
~u 

then we have the folio~i±ng set of relations

= 
—~G/ 9a X + + L88 

X
3 

(C.7) 
-

::a I ;~; 
-__ + LBa 

X
3

m d
where = a ,

A
X

B
h = 8 are unit vectors along 8—const. and a const. curves ,

and
-* +

x x x
-

~~ 
a 8 (C.l0)

3

is the outward unit normal to the surface. Another quantity of interest is the

“geodetical curvature” Kg 
given by

- 

K
g 

= 
aG/aa (C.11)

Using the above relations, we can derive the following expressions

which h~lds true at the stationary point :

= 0  (C.12)
a

38 ~~ 
~~ 0 (C.13)

= 0 
~ 3a38 

= 0 , -
~~--~~~ = 

G[~ 
+ 

~
-] (C.l4)

where P
~ 

l/K
g~ 

and

— -~~~- , = ~L
Ba/P (C.i5)

~~ 
~ a 

3a 38

~



r • 

~~~~
—

- - . — -  - - -

3:230 

G 
+ 

3G/3 a + 3
2G/ 3a2 

— 
L88 

(C.l6)

— 
33G/38 

+ -~~~ • + L8~ • L
88 + 1 • 3

2
G (C 17)2R 38 3a 4G 2 3a38

where p
0 
is the radius of curvature of the geodesic.

Equations (C.12) and (C.l3) determine the location of the stationary

point. At this point R a 
~~~ 

which, if we introduce the ray concept ,

tells us that the surface rays leave the surface at the “point of diffraction”

tangentially . Equation (C.14) indicates that the stationary point is of

second order , so that we need higher—order derivitiesof~~~i*iase. L
00

, L
B0

and L88 are coefficients of the second fundamental form of the surface

evaluated at the stationary point. They are defined as

00 -
~ 

-
~
. aB + -

~ 88 -‘. +

L — x 0 ~ x3 
, L x 8 ~ x3 

, L — x88 x3

Using the relationships given above, one can find the expansion co-

efficients 8kl’ ama~ bma and Apq in (C.3). Zeroth and first—order terms in

(C.3) give us formulas (5.6).

A few remarks should be made concerning the expansion presented in

(C.3). First of all, (C.3) is a doubly infinite series; therefore , for each

fixed power of k~~ a finite number of terms should be summed up. The

coefficients of various terms in these finite sums, namely A ‘s , become
pq

very complicated when p and q are greater than 0 or 1. Another difficulty with

this series is that when the stationary point of the phase is of an order

higher than 1, the difference between the order of the successive terms

(when they are ordered according to the descending power of k) becomes very

57 - 

-•~~~~~~~~~~ - -~~~~~~~~- - - •. t•.i __ ,~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -
~~



-~~~~~~~~~ - -. -- --

small, and consequently the infinite series converges very siowly. For

instance, in our problem where 6 — 3 and t — 2 (stationary point is of
second order) , sometimes the difference between the orders of successive

terms is k~~
”6, which indicates the weak convergence (in an asymptotic

sense) of the expansion in the cases where the frequency is not very large.
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